X – Ray Diffraction Laser THERMO LOGG Contact Angle Analyzer Langmuir – Blodgett Film Deposition Scanning Electron Microscope with EDS (X-ray spectrometry) Small Angle X-Ray Scattering Apparatus Wide Angle X-Ray Scattering Apparatus Mercury Porosimeter Mass Spectrometer Nitrogen Porosimeter ultra-microtome AA GC-MS Scanning Electron Microscope with EDS (X-ray spectrometry) Proteome analysis [Proteomics] Remote Measurement System Transmission Electron Microscope CNC ΑGIECharmilles ΑCTSPARK FW-1P [CNC AGIE] CNC DMG CTX 510 Eco PHOTRON FASTACAM SA3 INSTRON 8801 Testing Device ROMER OMEGA R-SCAN & 3D RESHAPER LASER Cutter Pantograph with extra PLASMA torch CNC ΙDA XL 1200 Optical and Contact Coordinate Measuring Machine TESA MICRO-HITE 3D  RSV-150 Remote Sensing Vibrometer Ground Penetration Radar [GPR] Audio Magneto Telluric Optical Time Domain Reflectometers [OTDR] Non ion Rad Electric e-mat analysis Thermogravimetric Analyzers - Differential Scanning Calorimetry Magnetron Deposition Metal Deposition Grid Computing Center

Optical fiber splicer (SUMITOMO) [SPLICER]

Compact, lightweight and fast core aligning fusion splicer.  Software upgrades over the internet. Built in help videos play on the splicer display. Versatile and simple to use with full touch screen control. Universal clamps for primary coated fibre, tight, semi-tight and loose buffer fiber. 5mm cleave length for strong and compact splices.        

Contact person:

Panagiota Papadopoulouy
tel. (+30) 2510462168
This email address is being protected from spambots. You need JavaScript enabled to view it.

 

osa

Optical fibers are connected to terminal equipment by optical fiber connectors. These connectors are usually of a standard type such as FC, SC, ST, LC, MTRJ, or SMA, which is designated for higher power transmission.

Optical fibers may be connected to each other by connectors or by splicing, that is, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is arc fusion splicing, which melts the fiber ends together with an electric arc. For quicker fastening jobs, a “mechanical splice” is used.

Fusion splicing is done with a specialized instrument that typically operates as follows: The two cable ends are fastened inside a splice enclosure that will protect the splices, and the fiber ends are stripped of their protective polymer coating (as well as the more sturdy outer jacket, if present). The ends are cleaved (cut) with a precision cleaver to make them perpendicular, and are placed into special holders in the splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and after the splice. The splicer uses small motors to align the end faces together, and emits a small spark between electrodes at the gap to burn off dust and moisture. Then the splicer generates a larger spark that raises the temperature above the melting point of the glass, fusing the ends together permanently. The location and energy of the spark is carefully controlled so that the molten core and cladding do not mix, and this minimizes optical loss. A splice loss estimate is measured by the splicer, by directing light through the cladding on one side and measuring the light leaking from the cladding on the other side. A splice loss under 0.1 dB is typical. The complexity of this process makes fiber splicing much more difficult than splicing copper wire.

Mechanical fiber splices are designed to be quicker and easier to install, but there is still the need for stripping, careful cleaning and precision cleaving. The fiber ends are aligned and held together by a precision-made sleeve, often using a clear index-matching gel that enhances the transmission of light across the joint. Such joints typically have higher optical loss and are less robust than fusion splices, especially if the gel is used. All splicing techniques involve installing an enclosure that protects the splice.